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A 3-D theory is presented for a free electron laser that employs an electron beam of a thickness
comparable to both the wiggler wavelength and the waveguide radius. The time-independent
and the linearized time-dependent cold fluid and Maxwell equations are expanded in a small
parameter, which is the ratio of the perpendicular to parallel electron momentum. The stability
problem is reduced to a nonlinear eigenvalue problem of a fourth-order system of linear
ordinary differential equations. A perturbation method is justified and used to solve these
equations. A dispersion relation is derived which results from the solvability condition for the
first-order equations in the perturbation. The orders of magnitude of the beam density and
wave frequency, for which the growth rate of the instability scales as in the strong-pump
regime of the 1-D analysis, are determined. An equation, which the beam energy radial profile

has to satisfy, is also derived.

I. INTRODUCTION

In the free electron laser (FEL), which is a source of
tunable high-intensity electromagnetic radiation,' a relativ-
istic electron beam amplifies electromagnetic waves. In or-
der to maximize the power generated by the free electron
laser, it is desirable to have a large number of resonant elec-
trons in the form of a high-current beam. In practice, the
way to increase the current is to have a large cross-section
beam. It is our purpose here to study a free electron laser that
employs a thick beam. Contrary to previous 3-D theories
that dealt with thin beams” or filament-type beams,> we con-
sider a beam with a radius comparable to the wavelength of
the wiggler and the radius of the waveguide. We find a pa-
rameter regime in which the whole beam is resonant and the
growth rate scales the same as in the approximated 1-D the-
ory of the strong-pump regime,* in which it is proportional
to the cubic root of the product of the density and the square
of the perpendicular velocity amplitude. In order to preserve
this scaling the parallel velocity of the beam has to be uni-
form across the beam to a high degree. The radial gradients
of the wiggler field and the equilibrium self-fields create
shear in this parallel velocity. We determine the orders of
magnitude of the beam density and wave frequency that are
needed in order to preserve the scaling of the growth rate.
We also derive an equation that the beam energy radial pro-
file has to satisfy. In this case, the degradation and limita-
tions of FEL performance that the shear implies, which have
been well recognized in the 1-D theory,’ do not affect FEL
operation to lowest order.

The equilibrium, of which we study the stability, is that
of a relativistic helically symmetric cold electron fluid in the
presence of both uniform guide magnetic field and helical
wiggler field.® The wiggler field, and correspondingly the
flow, have a general helical magnetic multipole number and
are not limited to the usual dipole moment or to the quadru-
pole moment studied recently.” Self-fields are also taken into
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account. The time-independent equations are expanded in
the small ratio of perpendicular to parallel velocities. The
requirement of low shear dictates the use of a tenuous beam
so that to lowest order the self-fields do not appear.

We perform a stability analysis by solving the linearized
time-dependent cold fluid equations and the Maxwell equa-
tions. We now expand the linearized equations in the small
ratio of perpendicular to parallel velocities. The beam cou-
ples the various helical harmonics of the wave. However,
when one of the harmonics becomes large, the series of infi-
nite coupled equations can be truncated. To lowest order in
the expansion we derive a fourth-order system of ordinary
differential equations of a nonlinear eigenvalue problem. In
the complex eigenvalue plane there are infinite nonreal
eigenvalues in the neighborhood of zero. By adjusting the
equilibrium quantities or the frequency, one of the modes
may satisfy a resonance condition typical of free electron
lasers. Near that resonance the eigenvalue of the unstable
resonant mode becomes large and the mode becomes, to low-
est order, a vacuum waveguide mode. In this case, the equa-
tions are solved using a perturbation method. The eigenval-
ue is found by calculating the roots of the dispersion relation
that results from the solvability condition. The dispersion
relation is a cubic polynomial of a form familiar from 1-D
analyses of free electron lasers in the strong-pump regime.

In Sec. II the thick beam equilibrium is described. In
Sec. III the linearized time-dependent cold fluid and Max-
well equations are presented, the fluid equations are approxi-
mated for the beam modes, and a simple expression for the
perturbed density is derived. The fluid equations are coupled
to Maxwell’s equations to yield the final fourth-order system
of equations. In Sec. IV the domain in the complex plane,
where nonreal eigenvalues are possible, is found and a dis-
persion relation is derived for the resonant case. The nonre-
sonant unstable modes are also discussed in Sec. IV and we
conclude in Sec. V.

Il. THE EQUILIBRIUM

We consider a helical flow, which depends on r and ¢
( = 6 — kz), where r, 6, and z are the usual cylindrical co-
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ordinates, and which is characterized by normalized density
and momentum. The normalized density 4 is

h=wl/c%y, (1
where w, is the plasma frequency (@, = 47Ne’/m), Nis the
electron density, ¢ and m are the electron charge and mass,
(y — 1)mc? is the electron kinetic energy, and ¢ is the veloc-
ity of light in vacuum. The cylindrical components of u (the
momentum divided by mc) are u, v, and w. The helical flow
is driven by an M multiple external magnetic helical wiggler
field and is confined by a uniform axial magnetic field.

Asin Ref. 6, we expand the equilibrium quantities in the
small parameter €, which measures the ratio of the magni-
tudes of the perpendicular and parallel momentum compo-
nents, as well as the ratio of the magnitudes of the external
wiggler and uniform axial magnetic fields. Since we want the
parallel velocity of the beam to be uniform to some high
order, we limit the density to second order in €. We assume
also that to lowest order we have a straight beam with uni-
form parallel momentum and no perpendicular momentum.
The energy of the beam, which is constant to lowest order, is

Yo=0(" "), p,>0. (2)

This choice of low density, vacuum fields, and beam profile
was shown in Ref. 6 to result in the following forms:
of the density,

h=€h,(r) + O(e); (3)
of the momenta,

€u = e(MA /kr){ar[L,,(Mkr)], + ML, (Mkr)}

X [(M?—a?)cos Mp] ! + O(€?), (42)
€= —eM?A /kr){r[1,,(Mkr)], + al, (Mkr)}

X [(M? — a?)sin Mp]~' + O(€?), (4b)
w=w,+ w,(r) + 0 "), (4¢)
of the energy,

¥ =Yo+11(r) + O ™) (5)
and of the fields,
E=0(""), (62)
€"B, = — €AM [1,,(Mkr)], cos Mg + O(€”), (6b)
€"By = [ed /(1 + k*P) | {r[ 1, (Mkr)],},
X sin Mg + O(€%), (6¢)
€'B, = €"B, — [edkr/(1 + k) {r[I,; (Mkr)],},
X sin Mg + O(€?). (6d)
Here
E =¢E'/mc?, (7a)
B = eB'/mdc?, (7b)

and E' and B’ are the electric and magnetic fields, B, is the
magnitude of the normalized guide field, and

a=B,/(kwy). (8)
Note that 7,, w,, and B, are O(e *) and 4 is O(1). The
equilibrium self-fields of the beam and the flow induced by
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these fields are of second order only. In Sec. III we perform a
stability analysis of the equilibrium. We show that the
knowledge of the equilibrium quantities is needed to first
order only. Thus in our case the equilibrium self-fields are
neglected. In a following paper we will study a case where
these self-fields play a major role.

lll. THE LINEARIZED EQUATIONS

The perturbed density 84 ', momenta du’, and energy 6’
of the beam are governed by the linearized continuity equa-
tion

%(y&h’+h57f’) +Ve(héu' +6h'u) =0, €)
the linearized momenta equation
a ’ ’ 1
ygﬁu + u'V éu’ + Su'-Vu
= —yOE — 6y E — Su'XB — uXxsB, (10)

and the relation
(11)

The perturbed wave electric field SE’ and magnetic field 5B’
are governed by the linearized Maxwell equations

y 6y =uwébu'.

2
VxVX&E'+~a—~5E'=i(5h'u+h5u’) (12)
at? ot
and
BB _ _ ywsE. (13)
at

Since the equilibrium does not depend explicitly on z and
since there has to be periodic dependence of ¢, we seek a
solution for the perturbed quantities of the form

f'=( i f(/)(r)exp(il¢)> expli(gz — wt)]. (14)
] =

= — oo

We limit ourselves to the case of FEL resonance, so that

P, =12p,, (15)
where
w=0(e 7). (16)

The eigenvalue g is assumed to be of the same order of mag-
nitude as w:

g=0(e " "). (17
We write every equilibrium quantity 4 to lowest order in the
form

A =A(M)eiM¢ +A(~M)eAiM¢ +A(0), (18)

where 4 M 4 (=™ and 4 ® are functions of r. Inserting
form (14) for the perturbed quantities and form (18) for the
equilibrium quantities into the fluid and Maxwell equations,
we obtain an infinite set of coupled ordinary differential
equations. The / *th harmonic of the continuity equation is
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[i( — o™ 4y (g - l*k)w(N’) + L9 uy i]&h re=m
N=0,+M r r or ar
= - lh (N)(—a)57/”***v’+l—f—5u("*‘v)+(q-—l*k)&w”‘"m)_ i‘i[rh(N)5u(l‘AN)].
N=0,+M r N=0,+M T ar
(19)
The / *th harmonic of the z component of the momentum equation is
™
[i( _w,}/(N) " (I*—N) o™ 4 (g — ki * +kN)w(N)> + du T+t i] Swlt—™
N=0+M r or ar
— 2 [ _V(N) 6E;l‘7N)_E§N) 57/(1*——A’V)_B(6N) 5u(l*AN)
N=0,+M
+BM &Ny SR 4 M SR IV (20)
The perpendicular components of the momentum equation are
* N T ) i
z [i[—a))f(N)—i—(l N+1)U(N)+[q—k(l*—-N)]w(N)$B§N’ +8u —|—u””£]
N=0+M 4 ar ar
X (u'" =N 1 isp!!T M)
= Y [—7yM@E "V LIiSES V) —(EN £IEFSyT Y
N=O M o o
FiBN +iBM)Sw!" N +i(u™ + ™SB! N Fiw™M(SBTN +i6B YT M) ]. (21)
Finally, the / *th harmonics of the Maxwell equations are
2 *
9 (rE +irEYY) — 2 L (8B £ insEYT) + (a)2 g1~ 2)) (WSE (™ + irSE ™)
ar r or r
=s{"= 3 [ia)(u“v) + WSE TN ik D (SutT Y LSyt
N N=0,+M
+(_.i_£) (7(N>5h(l‘-—N)+h(N)5y(l*~N))]_ (22)
or r
|
Solving this infinite set of coupled differential equations Py >0, (24)

is a formidable task. However, we are interested only in the
case in which some of the quantities become large and the
equations describing them decouple from the rest of the
equations and comprise a truncated finite set of equations.
These quantities are SEYV,8BY™, Sw' —*, and
Sh " =™ for | * equals some /. The magnetic field 5B” and
the helical flow u‘ =’ create a ponderomotive force that
causes large longitudinal bunching and makes a large paral-
lel momentum Sw’ ~*". The parallel momentum Sw" —*°
and the perturbed density 64  ~* are coupled through the
continuity equation. Finally, the product of the large
Sh =™ and the helical flow contributes to the perpendicu-
lar current, which is then coupled to 5B through Max-
well’s equations. For a special choice of parameter values,
the quantities just mentioned become dominant, as they are
in the 1-D theory of the FEL in the strong-pump regime.
Thus we intend to determine under which conditions the
basic interaction of the thick beam FEL is the same as the
interaction of an idealized 1-D FEL in the strong-pump re-
gime.

The component Sw'’ ~* is large if its coefficient in the
momentum equation (20) for/ * =/ — Missmall. We define

viwe= (g — kI + kM)w, — wy, = O(€7 ™) (23)

and look for the case in which
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which insures a small v. This case corresponds to the interac-
tion of the wave with a beam mode via the wiggler field. We
note that for every frequency o there is an eigenvalue ¢
which satisfies condition (24). Later, when we derive a finite
set of coupled equations, we obtain an additional relation
between w and ¢. These two relations will determine @ and ¢
to lowest order, and o will be found to be the well-known
Doppler-shifted resonant frequency. By requiring that v is
small we are aiming our analysis at the strong-pump regime.
Were we to explore the Raman regime, we would have to
require that a different parameter v, be small®:

Ve =V + @,Y/ W, (25)
Returning now to Eq. (20), we find that the coefficient of
Sw! =M s

vw'® + (1 — M)Hyv© /r. (26)

For the beam to be entirely resonant, or for the coefficient to
be small for every r, we require

vw' > (I — Mw®/r, (27)
which will be satisfied according to Eq. (4) if
Py <2. (28)

By using the smallness of v and the relations between the

Amnon Fruchtman 2498

Downloaded 06 Apr 2005 to 132.77.4.129. Redistribution subject to AIP license or copyright, see http://pof.aip.org/pof/copyright.jsp



zeroth-, first-, and second-order expressions for y, u, v, and
w, which follow the identity

Yr=14u? 4+ v’ +u? (29)

we find that the coefficient of Sw ~*, to lowest order, is

—op® + (g — Kl + kM)w®
= v, + (@/w})y; — 20Y,/wp)

><(u(M)u(—M) +U(M)U(—M)). (30)

We would like the first term on the right-hand side (rhs) to
be the largest. However, it can be shown that in the strong-
pump regime, the third term, which is o~ . 7), is larger
than the first term, which is O(€”™* “*). The only way to
insure the dominance of vw, on the rhs of Eq. (30) is to
require that the second and third terms cancel each other.
Therefore, the beam profile has to obey

V1= 2¥o(u™ul =M 4 0y =) =, (31)
The second term is O(&> ) and 7, is O(¢' ~#7). Thus

P, = (32)
and

P, =1L

N

(33)

Equations (31)~(33) constitute some of the main re-
sults of this work. In order for a thick beam to be wholly
resonant, with the resonance parameter of the strong-pump
regime, it is necessary for its density # tobe O(€?);its energy
tobe O (e~ 1/?); the wave frequency w to be O(e™!); and the
beam energy to be of a particular profile, described by Eq.
(31).

Having specified the orders of ¥ and @ and using the
inequality p, <2, we are able to simplify the equation for
Sw“~* much further. This equation decouples now from
the equations for Sw'” and dw"~** and becomes

ivw, Sw'! =

— Z (_Bl(QN)au(IWM—N)+B(N)5U(I~M—N))
N=+M
—u "M EBY o "M SR — y SEIM,
(34)
In our case it can be shown that the first term on the rhs of
Eq. (34) is relatively small and thus

vy 8w M = — (Yo/wo) (SE LPu' = + SE P v )
—y O SEUM, (35)

This final form of the equation was a result of the coupling of
Sw'—™ and SE'” by the ponderomotive force. Because the
coefficient v is small, Sw*’ ~* is large, which corresponds to
large longitudinal bunching.

We now turn to the continuity equation. On the rhs of
the continuity equation (19), the largest terms are those
containing Sw" ™ and 8y~ ™, which are O(e' ~ 7).
Since p, <2, the equation for 8k ~*" becomes, to lowest
order,
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vinsh M = — p O — psyt—M
+lg— U—=Mk]1sw"'="},  (36)
where 4 @ is €?h, of Eq. (3). We use relation (11) to obtain

o8y T = wedw! 0 (37)
and thus
Yy 8h M = — (h Qw/yowy)Sw! ~*. (38)

The large parallel momentum Sw'' ~ * creates large density
modulation 84 “/ ~*. The density modulation is large also
because its coefficient in Eq. (38) is v.

Having an expression for 84 /= * we are now ready to
estimate the magnitude of SE ('~ *’. For Gauss’ law we have

_l__é (r8E(—")y 4 i(l—-M) 6Eé[~M)
r dr r

+i(g—Ik)SE(—™

= —y @ spU-M, (39
We may neglect the term — 7, 8E !~ in Eq. (35) if
S8E ~™ is o(€). Because of Egs. (35), (38), and (39),
SE V=" is O(e* ™ *7). We require

3—-2p,>0. (40)
This inequality will be shown shortly to be satisfied. The
omission of SE {! ~* in Eq. (35) corresponds to the strong-
pump regime as opposed to the Raman regime. The density
modulation is therefore

Sh¢—M = (—~ih Ow/viuwf)
X M EED v "M SEL).  (41)
We now turn to Maxwell’s equations. For /* =/, the
source in Maxwell’s equation [Eq. (22) ] is, to lowest order,
S(i) — l'a)(u(M) + iU(M))(Sh = M)

+ iwh O (5u'? 1+ iv). (42)

It is easy to show that the dominant term on the rhs of Eq.
(42) is the first term, which results from the density modula-

tion. The source S 0 is O(€’ ~*"*) and following assumption
(40), S ¢ J_’j is 0(1). Finally, the Maxwell equations become

2
N )
ar\r or wq

-2v(w—7’&—kM)—v2—i(li2)”
w, r

X(r8E®" 4+ irSE )
h(O) 2 .

- 2‘;’ (W™ 4 )
Vg

X (U ~MEED 4 M SED).

(43)

Two boundary conditions are the regularity of 8 ¢” and

SE § at the origin. Two additional boundary conditions are
g—(rsEﬁ“),:R —SE{(R) =0 (44)
r

and they follow the assumption that a perfectly conducting
wall is located at r = R.
The two second-order ordinary differential equations
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with the two-point boundary conditions are solved for the
eigenfunctions 8E ! and 8E ) and for the eigenvalue v. To
simplify the notation, we omit the superscript / in what fol-
lows, with the understanding that the perturbed fields com-
prise, to lowest order, the / helical harmonic.

The dynamics of the beam is contained in the current
terms on the rhs of Egs. (43). To lowest order, the density
modulation yields the dominant contribution to the perpen-
dicular current. As in the 1-D analysis this density modula-
tion is expressed, to lowest order, as a function of the wave
fields and not as a solution of differential equations. Thus the
final truncated set of differential equations (43) comprise a
fourth-order system, which is the order of the Maxwell equa-
tions.

In Sec. 1V we derive a dispersion relation for the eigen-
values.

IV. NONREAL EIGENVALUES

Since we are interested in nonreal eigenvalues, which
correspond to unstable modes, we start by determining the
domains in the complex v plane, where nonreal eigenvalues
can be found. We multiply Eqs. (43) by 6E * FiSE ¥, inte-
grate by parts, and using the boundary conditions (44) we
obtain

(—2vd —V?)p, = p, + p/V°, (45)
where
d= [ft)(?/o/wo) - kM]’
R
2 :J dr r(|8E, |* + |8E,|*),
(¢]
b= |5Erlz=o + |5E9I%:o
R 2 2
_;_Zf ﬂ( i(r&E,) + [—a—(r(SEe) )
o r \lor ar
2 ®dr 2 2
+17 7(|5E,| + |8E4]%), (46)
0

2 R
py= “’_f drh O uSE, + v~ MSE, 2,
wi Jo

pa=p,— (@ —d?)p,.
The quantities p,, p,, and p, are real and positive. Looking
for nonreal v, we take the imaginary part of Eq. (45) and
obtain

d+v,)p, = /v, (47)

Since > 1, d is also much larger than 1. Using the Schwarz
inequality we conclude that

2
______—(d+ 2l =b <F E_a)27/<2) (1 e )
v, P wy '
X (u™ 2+ .0,
(48)
The domain in the complex v plane, where nonreal eigenval-

ues are allowed, is shown schematically in Fig. 1. Since F< 1,
we have

XIE(F/CZ’)]/?’, x2g(i3]/2/24/3)(F/d)1/3,
Xy= —d—F/d>.

(49)
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FIG. 1. The domains in the complex v plane where nonreal eigenvalues are
allowed.

That part of the domain where v, < — d corresponds to a
negative (g — Ik). These waves are backward propagating.
Our model is not valid for modes with eigenvalues of such
order of magnitude and thus we do not discuss them here.

We now turn to that part of the domain in the half-plane
of positive real part. We divide the eigenvalues here into two
groups. The first group includes eigenvalues large enough so
that the rhs of Egs. (43) iso(1). For this case Egs. (43) can
be solved perturbatively. The second group consists of
smaller eigenvalues where the rhs of Eqs. (43) is O(1) or
larger. The first group consists of only one pair of eigenval-
ues, complex conjugates of each other. They have the largest
imaginary part in that domain and are calculated correctly
by our model. We obtain their value in a closed form. The
second group consists of an infinite number of smaller eigen-
values with an accumulation point at the origin of the com-
plex v plane.

We now calculate the eigenvalues of the first group, for
which the rhs of Eqs. (43) is 0(1). In our model, the rhs of
this equation has to be o(1). Thus all the eigenvalues which
are calculated correctly by our model belong to this group.

To zeroth order we neglect the terms that are o(l).
These are the rhs of the equations and the terms which in-
volve v, since v, = 0. We obtain the vacuum equations

P2 (L2) (5 MDY a4 sy g,

ar\r or 7
(50)
with the same boundary conditions as before, and
Bl=0*— [@(yo/wy) — kM 1. (51)

The solutions of these equations are well known. These are
the TE modes

SE, = (1/Br)J,( Br), (52a)
SEq =i[J;(Br)] g (52b)
where
B =a/R (52¢)
and «a is one of the roots of
Amnon Fruchtman 2500
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Jila)= (52d)
and the TM modes

8E, = [J,(BP) ] pr (53a)

SE, = ilJ,( Br)/Br, (53b)
where again S = a/R and « is one of the roots of

Ji(a) = (53c)

From definitions (51) and (52c¢) and conditions (52d) and
(53c), we see that our model holds for two infinite sets of
resonant frequencies @, which obey

a’/R? =0} — [0, (Vo/w,) — kM |? (54)

and where « takes the infinite set of roots of (52d) or (53c).
The frequency of the wave has to obey condition (54) for the
eigenvalue to have a large imaginary part. This is the reso-
nance condition.

For each a there are two frequencies which obey Eq.
(54). The smaller of them is O(1). However, since we limit-
ed ourselves to high frequencies [Eq. (33)], our model is
valid for only the larger of the two frequencies, which is

o, = kMygw, + [k°M*w§ — (a/R)*] "> (55)

This is the well-known relation for FEL’s. We assume a/R is
O(1) and approximate @, as

0, = kMwy (v + wy). (56)

We now turn to the first-order equations. We expand
the frequency @ and the eigenvalue v as follows:

w=0,+0, V=v, (57)
where
0, €w,, v <l (58)
The first-order form of Eqs. (43) is
r% (ig— (réE,, +irdE,, ))
+ [(%)2 - l(li 2)] (roE,, +irbEq,) =1,
=2(kMw, + o,v,)(r8E,, +ir8E,,)
R 3 (u™ + ™)
A wf
X (u' "M SE,, + v ~M SE,,), (59)
where
=0 . (60)

In Eq. (59) 6F,, and 6E,, are the vacuum solutions given
by (52a) and (52b) or (53a) and (53b) and « is given by
(52d) or (53c).

Equation (59) is an inhomogeneous boundary value
equation for x , and x_:

x,=rSEQ +irSEY). (61)

The homogeneous equations (50) have regular solutions
g, and irregular solutions y , of the form

g =rJ1i1(Br), (62a)

j g =rY,i1([3’r), (62b)
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and s given by (52c). The general regular solutions of Eq.
(59) are

x+=ly+J‘g+f+dr g+fMdrl+Cg+,
(] ¥ 2 0 r

2
(63a)
xﬁ:ly_fg_—dr’—f— fyj_dr +Cg_.
2 0 r 0
(63b)

The functions /. and f_ on the rhs contain 8E, and 6E,,
which are given by Egs. (52) or (53). The solutions have to
obey the boundary conditions at the wall:

x,(R) —x_(R)=0, (64a)
x, (R)+x_(R)=0. (64b)

Since g and g _ also obey the boundary conditions (60), we
obtain

Rdr Rdr
VoR) | —g fy —y_(R)| —g_f_ —g.(R)
(R o o r

Rdr
Xf _r‘(y+f+-y—f—)=O’ (65a)
0

, ®dr , ® dr ,
Y5 (R) _g+f++y_ (R) _g—f-—_g+ (R)
o r o r

R
d
xj Lo fimyfo=0 (65b)
0
We now multiply Eq. (65a) by g’, (R) and subtract from it
the product of Eq. (65b) by g, (R). We use the Wronskian
relations between g and y and Eq. (64) and obtain the solv-
ability condition

R dr
j “(g+f++g—f—)=O-
o r

The solvability condition is an equation for the eigenvalue
v,. Once we have found v,, f, and f_ are known and the
eigenfunctions x . and x_ are given by Eq. (63). The con-
stant C in Eq. (63) is not determined so far. If needed, we
may determine it by requiring that the eigenfunction be nor-
malized to unity.

The solvability condition (66) is a dispersion relation,
which we may write explicitly as

(66)

R
2kMw, + o,v,) J dr r(|8E,|* + |8E,|*)
0

+ 2u™Mp Im(SE, SE )] = 0. (67)

Here 8E, and 8E, are given by Eqgs. (52) or (53). It might be
useful to write the dispersion relation in the following com-
pact form:

(E+)A%= — PR\/R,, (68)
where
E=2kMow), (69a)
and is the mismatch parameter,
P=40/w}, (69b)
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R
R,EJ drh @] |8E, |2u™ 4 |8E, 0™
(6]

+ 2u™y™i Im(S8E, SE¥)], (69¢)
R
stf dr r(|8E, | + |6E,|?), (69d)
0
and the normalized eigenvalue is
A=20,v,. (69¢)

The dispersion relation (68) is a cubic polynomial in the
eigenvalue A of a form similar to that of the 1-D theories of
the free electron laser in the strong-pump regime.* There are
two nonreal eigenvalues, complex conjugates of each other,
with imaginary part (for § = 0):

Im A | = (3/2) (PR,/R,)'>. (70)

The 3-D effects of the wiggler field, the finite beam thick-
ness, and the waveguide are expressed through R, and R,
[Eq. (69)]. From both Egs. (68) and (70) we conclude that

Py =3 (71)

Inequality (40) is indeed satisfied. Again, this is also the
basic scaling in the 1-D theories of the free electron laser in
the strong-pump regime.

From Egs. (60) and (33) we find also that

/o= 0(7) = 0(e*'?). (72)

In addition we note that since, to lowest order, the wave
fields are the waveguide modes, optical guiding is absent in
the case we treat here.

We now turn to the second group of eigenvalues. The
eigenvalues of the second group are smaller than those of the
first group. It is possible to show that v = 0 is an accumula-
tion point. However, we do not study this group in detail
both because our model is not a good approximation for
them, and because the mode of the first group is the most
unstable and is dominant. Instead we find the values of these
eigenvalues for a simple particular case.

Let us look at the case

kR<«1 (73)

and apply the paraxial approximation. From Eq. (4) we ob-
tain

VM =M = =M = =M — M-l (74)
where B is a positive constant. Equations (43) become
afl o /
r5(75x+)+(w2—d2—2vd—v2—7(l+2))x+
=0, (75a)
J (1 a ) ( 2 2 /
r—{——x_ —d?’=2vd—v —= (=2
ar\r arx e v rz( )
) 2
_ 2 32;2“—3‘”—4)x_ =) (75b)
vV wo
The solution of Eq. (75a) is
x, =D vJ, (B.r), (76a)
where
Bz+ =w’—d?*—=2vd — % (76b)
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In order to simplify the solution of Eq. (75b), we choose

h© =hr =2, (77)
which gives
x_=D_rJ, (B_r), (78a)
B2 =w?—d?—2vd —v? —2hB 0’ /Vul.  (78b)
By using the boundary conditions (64) we obtain
. D, J, (B R)—D_J,_(B_R)=0, (79a)

D+[r‘]l+l(ﬁ+R)],r +D~—[rJ1-l(ﬁAR)],r =0
(79b)

Nontrivial solutions for D, and D_ exist if the following
dispersion relation is satisfied:

BiJi (BLR), (B_R)

—B_J,(B_R);, (B,R)=0. (80)
For small v,

B =o*~d? (81a)

Br =o*—d?*—2hB0*/vul. (81b)

It is easy to show that v = Ois a limit point of the roots of
Eq. (80). For given w and . we look for the roots B_R of

B_RJ,(B_R) _ BRI, (B.R)
Ji_(B_R) Ji 1 (BLR)
From the asymptotic form of the Bessel functions it is clear
that for large 8_R the lhsis a periodic function of #_ R with
21 periodicity, and its range is [ — «, o ]. In every period
there are two roots S_R for Eq. (82), with a corresponding
series v2, where, with (81b),

V2 = — 2hB’w* /B> ,wh—0 _. (83)

Thus near the limit point the eigenvalues v, are pure imagi-
nary.

(82)

V. CONCLUSIONS

We presented a theory of a thick beam free electron la-
ser, operating in the strong-pump regime, which included 3-
D effects of the wiggler field, the waveguide, and the beam
thickness. The wiggler field was of a general magnetic multi-
pole number and self-fields of the beam were considered in
the equilibrium. We assumed the thickness of the beam to be
comparable to the wiggler wavelength and to the waveguide
radius. The result of this assumption was that in order to
operate in the strong-pump regime, there were constraints
on the beam density and energy and on the wave frequency.
These constraints could be relaxed easily if the beam thick-
ness were smaller than the wiggler wavelength. The relaxa-
tion of these constraints while the thickness of the beam re-
mains unchanged would be even more attractive. The case of
a high-current thick beam FEL, operating in the Raman
regime, is under investigation.
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